sexta-feira, 22 de fevereiro de 2019

  X     
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


A mecânica quântica teve suas bases estabelecidas essencialmente pelas seguintes revelações científicas: em 1838Michael Faraday descobriu os raios catódicos; em 1859,Gustav Kirchhoff enunciou o problema da radiação de corpo negro; em 1877Ludwig Boltzmann sugeriu que os estados de energia de um sistema físico poderiam ser discretos e, finalmente em 1900, Max Planck formulou a hipótese que toda a energia é irradiada e absorvida na forma de elementos discretos chamados quanta. Segundo a teoria, cada um desses quanta tem energia proporcional à frequência ν da radiação eletromagnética emitida ou absorvida.
A ideia de descrever um fenomeno de radiação eletromagnética pela quantização da energia era extremamente revolucionária para a época; pois, em 1803, Thomas Young já havia comprovado o comportamento ondulatório da luz através do experiência de dupla fenda.  Segundo Max Planck, essa teoria é apenas um aspecto teórico dos processos de absorção e emissão de radiação e não tinha nada a ver com a realidade física da radiação em si.[2] Nas palavras do próprio cientista: “em um ato de desespero, pois uma interpretação teórica (para a radiação de corpo negro) deveria ser encontrada … eu estava pronto para sacrificar todas as minhas convicções previas sobre física…”.
No entanto, isso parecia não explicar o efeito fotoelétrico (1839), no qual a incidência de luz em certos materiais pode ejetar elétrons do mesmo. Em 1905, baseando seu trabalho na hipótese quântica de Planck, Albert Einstein postulou que a própria luz é formada por quanta individuais,[3] o que em 1926 ficou conhecido como fóton. Em 1921, Einstein recebeu o Prêmio Nobel pelo efeito fotoelétrico[4].
Louis de Broglie levou mais a fundo a ideia corpuscular e ondulatória da luz e por analogia, postulou que partículas também possuiriam um comprimento de onda, uma onda de materia. O físico francês relacionou o comprimento de onda (λ) com a quantidade de movimento (p) da partícula, mediante a fórmula:
onde h é a Constante de Planck. De Broglie também postulou que se elétrons fossem propriamente submetidos ao experimento de dupla fenda, também apresentariam um padrão de interferência. Em 1927, O experimento de Davisson–Germer confirmou as previsões de de Broglie, estabelecendo a dualidade onda-partícula da matéria. Em 1929, de Broglie recebeu o Prêmio Nobel pela descoberta da natureza ondulatória do elétron[5].
Em meados da década de 1920, a evolução da mecânica quântica rapidamente fez com que ela se tornasse a formulação padrão para a física atômica. No verão de 1925, Bohr e Heisenberg publicaram resultados que fechavam a "antiga teoria quântica". Da simples postulação de Einstein nasceu uma enxurrada de debates, teorias e testes e, então, a todo o campo da física quântica, levando à sua maior aceitação na quinta Conferência de Solvay em 1927.



Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicado em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula.
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. As soluções para a equação de Schrödinger descrevem não só sistemas molecularesatômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.

Equação dependente do tempo[editar | editar código-fonte]

Usando a notação de Dirac, o vetor de estados é dado, em um instante  por . A equação de Schrödinger dependente do tempo, então, escreve-se:[5]
Equação de Schrödinger Dependente do Tempo (geral)
Em que  é a unidade imaginária é a constante de Planck dividida por , e o Hamiltoniano  é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.





Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].